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Evaluation of lattice sums using Poisson’s summation 
formula. I1 

A N Chabat and R K Pathriaj: 
7 Universidade Federal da Paraiba, Departamento de Fkica, CCEN, Jog0 Pessoa, Paraiba, 
Brasil 
‘4 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada 

Received 21 April 1976 

Abstract. Application of Poisson’s summation formula for the analytic evaluation of a 
class of lattice sums in arbitrary dimensions is extended to a more generalized class of sums. 
The resulting formulae are applicable to a variety of problems such as electronic-structure 
studies of crystalline solids, the onset of Bose-Einstein condensation in finite systems, the 
analysis of stability of quantized vortex arrays in extreme type-I1 superconductors and in 
rotating superfluid helium, plasma oscillations in an array of filamentary conductors, etc. 
They also provide an alternative approach for the determination of Madelung constants and 
other related sums that appear in the theory of cubic lattices. 

1. Introduction 

In a recent paper (Chaba and Pathria 1975a, to be referred to as I, see also Hall 1976) 
we employed Poisson’s summation formula for the analytic evaluation of m- 
dimensional sums: 

f~ exp[-a(l:+/:+ . . .+/;)I(~?+L:+. . , + I ~ ) - s  (a  > O )  (1) 

fr c0s(2mlll)  . . . cos(2mmlm) exp[-a(l: + . . . + l : ) s] ( l :  + . . . + l ; ) - s  

{ lz}=-m 

where Z’ excludes the term with l1 = 12 = . . . = 0. In this paper we extend the use of the 
Poisson technique for evaluating more generalized sums such as 

(2) 
{I,}=-oo 

and 

In (3), the vector E is generally non-zero and the sum includes the term with 
= l2  = . . . = 0; however, ‘if E = 0, then the term with Il = l2 = . . . = 0 ought to be 

excluded. Some of these sums, especially of type (2), also appear in a recent paper by 
Hautot (1975) who has consistently used Poisson’s summation formula of dimensional- 
ity lower than that of the sum itself. The reason for this, as pointed out by Hautot, is that 
because of the exclusion of the term with l 1  = l2 = . . . = 0 in his sums Poisson’s formula 

141 1 



1412 A N Chaba and R K Pathria 

of the same dimensionality cannot be employed. At this stage it appears worthwhile to 
recall that, according to Poisson, 

which brings out the remarkable fact that the term with q = 0 on the right-hand side of 
(4) is precisely equal to the asymptotic value of the sum on the left-hand side, as 
obtained by replacing the summation over I by an integration; the q # 0 terms, 
therefore, arise from the discreteness of the sum. Under appropriate circumstances, the 
resulting sum over q may converge much faster than the original sum over I. 

We shall show that, by employing a technique developed by Fetter et al (1966), we 
can circumvent the difficulty mentioned by Hautot and make use of Poisson's summa- 
tion formula of the same dimensionality as of the sum itself. Moreover, many of the 
desired results can be derived by taking Laplace transforms of appropriate formulae 
obtained by a prior, often simpler, application of the Poisson technique. 

For illustration we shall start with one-dimensional sums and then proceed on to the 
more relevant sums in two and three dimensions. Some of the resulting formulae are 
applicable to the electronic-structure studies of crystalline solids (Harris and Monk- 
horst 1970), the investigation of Bose-Einstein condensation in finite systems (Green- 
spoon and Pathria 1974, Chaba and Pathria 1975b, 1976, Zasada and Pathria 1976), 
the analysis of stability of quantized vortex arrays in extreme type-I1 superconductors 
and in rotating superfluid helium (Fetter 1975), etc. They also provide an alternative 
approach for the determination of Madelung constants and other related sums that 
appear in the theory of cubic lattices (Hautot 1974, 1975, Zucker 1975, 1976). 

Throughout this paper we shall use the following notation: S ( E ~ , .  . . , E , ;  a )  and 
U ( E I , .  . . , E , ;  a )  will denote sums (2) with s = 1 and 1/2, respectively, while 
T ( E ~ ,  . . . , E , ;  a )  and V ( E ~ , .  . . , E , ;  a )  will denote sums (3), again with s = 1 and 1/2, 
respectively. Sometimes we shall use the symbols T' and V' to denote the exclusion of 
the term ll = l2  = . . . = 0 from the sums in question; in the case of S and U, such a term is 
already excluded. 

2. Lattice sums in one dimension 

We start with the Poisson identities 

and 
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which hold for all a > 0; for reasons of symmetry, it will be sufficient to consider 
O s  E s 1/2. Separating the (I = 0)-term from the left-hand side of (7) and integrating 
with respect to a, we obtain 

m f  cOs(2rEl) 
S (E ;a )=  1 exp(-aP) 

/=-m 1’ 

where the exponential integral is given by 
m 

E,, ( z )  = t-” exp(-zt) d t  (n S O )  

so that, for n > 1, E,(O) = l/(n - 1). For E = 0, we have 
1 

In the limit a + 0, we obtain the asymptotic behaviour 

It is obvious that equation (9) can also be used for determining the asymptotic 
behaviour of the sum Xq E3/,[a (q  +E)’]. 

Carrying out a similar operation with (8), we obtain 
.- 

T(e ;a )=  c I exp[-a (I + el2]  
I=-m (1 + E )  

where 

so that ((n, 1) = f(n), the Riemann zeta function, whereas f(n, E + 0) = E - “  +f(n). The 
special case of E = 1/2 is worth noting: 

Again, one can obtain asymptotic behaviour of either of the two sums involved here. 
We now consider the sum 
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which may be evaluated by integrating the Poisson identity 

a 2  2 ) .  
q=-CO ( 4 T  (q+E) 

CO 

U ( € ;  a )  = -2 ln[2 sin(m)].+a - C In 1 +T- 

The sum (15) can, however, be evaluated by elementary means, with the result 

U ( € ;  a )  = -ln[l-2 cos(2m) e-" +e-'"]. (18) 

Comparing (17) and (18) we obtain the remarkable result 

which holds for all a and E .  Special cases E + 0 and E = 1/2 are rather well known; the 
case E = 1/4 is not so well known but is clearly interesting. 

Finally we note that the sum 

,-a€ _-a ( 1-E)  

(20) 
L. 

-- - ~ ( e ,  I ,  1 + E ;  e-")+: F ( ~ - E ,  1 , 2 - ~ ; e - " )  
E 1 - E  

where F(a, b, c ; z )  is the hypergeometric function. In the limit a + 0, 

F(E, 1, 1 + E ;  e-") = E[ln(l/a) ++(l) - + ( E ) ] ,  

where + ( z )  is the digamma function d[ln r(z)]/dz. Accordingly, 

V ( E ;  a ) = [ 2  ln( l /a )+2$(1) -+(~)-+(1  -E)]. 

Since +(l)-+(1/2)= 2 ln2, 

V($;  a )  = 2 ln(4/a), 

which is consistent with the exact result, namely 

v(3; a )  = 2 ln[coth(&z)]. 

3. Lattice sums in two dimensions 

Starting with the two-dimensional version of (7), we obtain 
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The limiting case E + 0 has already appeared in I: 

where 

=0.771605. (26) 
U - 0  

Comparing (24) and (25), one obtains the asymptotic behaviour of the sum S(el, E ~ ;  0): 

l imS(E1,E2;O)=-27rln(m)+C2-ry 
€+O 

where E = ( E : + E ~ ) ~ ” .  The following special values of S(e1, E ~ ;  0) may also be noted 
(Glasser 1973, Zucker 1974, Zucker and Robertson 1975): 

(28) 
1 1  S ( O ,  +; 0) = -+T In 2; S(z, z; 0) = -T In 2. 

The asymptotic behaviour of S(el, e2;  a) ,  as a +O,  is readily obtained from (24). 
Next, we obtain from the two-dimensional version of (8) 

where 

2 
T m 

= -Tin a + B ( c 1 ,  E Z ) - T  2’ cos(2mlq1) cos(2~~,q,)E,(-(qi+q:) 
q1,z=-m U 

(29) 

B(c1,  e2)  =lim [ T ( E ~ ,  € 2 ;  U ) - T  ln(l/a)] 
U - 0  

Now, in the limit E + 0, T ( E * ,  E ~ ;  a )  = ( 1/e2) - a + S(0,O; a) .  Hence, in view of (25) and 
(261, 

B(E + 0) = (1 / E  2 ,  + c,. 

S(1 2 , 2 ,  1. a )=’ 4T’(O, 0; 4a)+4T(i, ;; 4U)-+z-(O, 1; 4a)  

(3 1) 
To obtain some other values of B(e1, E ~ ) ,  we note that since 

and 

T’(0,O; a) = iT’(0,O; 4a)+iT(?, 4; 4a)  +?T(O, 4; 4a)  

we have, in the limit a + 0, 

4S(& +; 0) = C*+B(l, &2B(O, +) 

3c2 = - 8 ~  In 2 + ~(4,i)  + ~ B ( o ,  

B(0,;) = C2+37r In 2; 

and 

Combining these results with (28), we obtain 

B(& +) = c 2 + 2 r  In 2. (32) 
Again, the asymptotic behaviour of the sum T(e1, c2;  a) ,  as a + 0, is readily obtained 
from (29)-(31). 
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We now multiply the two-dimensional version of (7) by and integrate with 
respect to a, with the result 

where 

In the limit .E + 0, we obtain the following result, which is symmetric with respect to the 
interchange a tf(.rr2/a), 

2 1/2 f ,  erWa (1: + QI 
11,2=-ca (1:+l;)1/2 

where 

D = lim [P(el, €2)- ( 1 / ~ ) ]  = 45($)p($) = -3.900265. (36) 
€-DO 

For a = .rr, we get the following sum in a closed form: 

From (35) it follows that, in the limit a +O, the sum in question approaches the 
asymptotic value 2(.rr/~)’/~ +D. Finally, we note the following special values of 
Pk1, €2): 

P(0, $)=2&(&- 1)4‘($)p(i)=-1.142361 

P($,$)=4(Jz-  1)5($)@($)=-1*615543. 

From (33) it follows that 
2 1/2 erfcbC(q1 +€1)2+(q2+€2) 1) f 

ql.z=-al 

In the limit a + 0, we get for this sum the asymptotic value 

2(.rr/a)1/2+P(€1, €2). 

We shall now consider the sum 
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In order that Poisson’s summation formula be applicable to this sum, we follow the 
technique of Fetter et a1 (1966) and write 

U(el, e2;  a )  = lim e2; a, 6) 
S+O 

where 

Poisson’s formula may now be applied to the summation over 1 whereby this summation 
gets replaced by 

Integration over p may now be carried out, with the result 

where r(n,  8) is the incomplete gamma function. In the limit 6 + 0, we have 

Using (39a), we finally obtain 

we note that P(e1, €2) = ea;  0). In retrospect we observe that equation (41) could 
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also be obtained by taking a Laplace transform of (39) with respect to the variable t = a 
and replacing the parameter s by a2/(41r2). 

Letting E ~ , ~ + O ,  we obtain with the help of (36) 

For small a, one can obtain a complete asymptotic expansion of U(0,O; a )  in powers of 
a 2  by using the Hardy sums 

cm, (4:+9:)rS =45(s)P(s) (s > 11, 
q1,z=-m 

which would appear among the coefficients of the expansion. 
Similarly, by taking a Laplace transform of (33), we obtain 

(43) 

In the limit E ~ , ~ + O ,  V(eI, e 2 ;  a )  = ( l / e ) - a  + U(0,O; a ) ;  equations (42) and (44) then 
lead to a result identical with (36). For small a, (44) gives 

(45) 
21r 
a v(e l ,  e2;  a)=-++(el, e2)-0(a2) .  

We note that, since the right-hand side of (44) can be written as a complete sum over q, 
this result can also be obtained by a direct application of the two-dimensional Poisson 
formula to the sum over 1. 

Finally we obtain, by an appropriate manipulation of the identity 
m 2 

l l ,z=-m Z e x p [ - a ( ~ + ~ ) ~ = ( ~ )  a q1.z=-m c exp( - ~ ( q : + q i ) ) ,  a 

the following formula (for p # 0, 1) 

where D(p) is given by 

D(P) = 4r(P)s(P)P(P). 

For p =& (46) reduces to (35), with D($) = lr112D. 

(47) 
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4. Lattice sums in three dimensions 

Following the procedure of 0 3, first of all we obtain 

exp[2?ri(c. R)-aR2] erfc(m-'/2(R +E/) 
= a + S ( e ; O ) - l l C  

R 2  R lR+el 
S ( E ;  a )  = C' 

R 

The limiting case E + 0 has already appeared in I: 

2113/2 , erfc(.rra-'/2R) 
R S(0 ;  a )  = -7 + c3 + U - 77 C > 

U R 

where 

C3 = lim (S(0; ~ ) - 2 r r ~ / ~ a - ' / ~ )  = -8.913633. 
a+O 

(49) 

Comparing (48) and (49), one obtains the asymptotic behaviour of the sum S ( E ;  0): 

ll 
limS(e;O)=-+C3. (51) 
E + O  E 

The following special values of S ( E ;  0) may also be noted (Zucker 1975, Zasada and 
Pathria 1976): 

S ( 0 ,  0,;; 0) = -0.301380, S ( 0 ,  i, 4; 0) = - 1.830045, 

S ( f ,  i, 4; 0) = -2.519356. (52) 
The asymptotic behaviour of S ( E ;  a) ,  as a + 0, is readily obtained from (48). We also 
obtain the following asymptotic result: 

Next we obtain 

exp[-a (R + e)*] T ( e ; a ) = C  
R (R+r)2  

(54) 
2113/2 exp[2ri(c . R ) ]  erfc(m-'/2R) 

R =a'/2+B(B)-ll  C' 
R 

where 

Now, in the limit E + 0, T(e  ; a )  = ( 1/e2) - a + S ( 0 ;  a ) .  Hence, in view of (49) and (50), 

1 
B(e+O)=7+C3.  E (56) 

The following special values of B ( E )  may also be noted (Zucker 1975): 

B(0, 0, ;) = -2.432806, B(0, f, i) = -4.65i3782, B(z, 1 1 1  z, z) = -5.490136. 
(57) 

The asymptotic behaviour of T(E;  a ) ,  as a +O, is readily obtained from (54) and (55) 
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We also obtain the following asymptotic result: 

exp[27ri(~ - R)] erfc(a”2R) lim (E’ 
R 7r 0-0 R 

Before proceeding further we wish to point out that some interesting relationships 
can be established by breaking the given sums S ( E ;  a) and T ( E ;  a)  into sub-sums; for 
instance, one obtains 

here, A(€) stands for S ( E ;  0). Thus, for ~ 1 , 2 , 3 = O  or i, a knowledge of only three 
numbers, such as C3, A (z ,~ ,  2) and B ( z , ~ ,  z), suffices. In passing, we note that equations 
(59) lead to the following derived relationships, which have also been noted by Zucker 
(1975): 

1 1 1  1 1 1  

(600 1 

(60b) 

1 1 1  3A (0, 0, f) + 3A (0, f, 4) + A  (z ,~ ,  5) = C3 

and 
1 1 1  3B(O, 0,$)+3B(O,4,t)+B(z,2,z)=3C3. 

Next, taking Laplace transforms of identities (54) and (48), respectively, we obtain 

exp[27ri(c. R) - aR] 
R 

U ( € ;  a )  = E’ 
R 

and 

2 

=-z+--- 47r A(€)  a 2  E’ exp[27ri(~ . R)][ R ’(5 + R ’)Ip1; 
U 7r 47r R 

we note that B ( E )  = TU(€; 0). 
In the limiting case E + 0, we get, using (56) and (51) respectively, 

2 - 1  
U(0; a )  = V’(0; a )  =E’ exp(-aR) =%+s+a-7Z’  U 2  

[R2($+R2)] , (63) R R  a ? T  47r R 

which leads to the following asymptotic formulae: 
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and 
4 r 3  4?r2C3 16r4 - +- + 7 - 0 ( S a ) .  (63b)  

n lim -tm [tr[R2(-$+R2)]-’)-- a a2 a 

Corresponding results for E # 0 can be obtained from (61) and (62). 
Finally we have (for p # 0, $) 

where E(p)  is related to the sum Ck R-2P and may be evaluated by substituting suitable 
values of a in (64); see also Zucker (1975). The special case a = T, p = i is worth noting: 

5. Applications and concluding remarks 

The sums evaluated in the preceding sections appear in several physical problems, some 
of which have been mentioned in the introduction. They have been of particular 
relevance in our recent work on Bose-Einstein condensation in finite systems. For 
instance, Chaba and Pathria (1975a) have employed (25 )  for evaluating the sum 

K O [ ~  (1: + 1:)’/2] which appeared in their analysis of the two-dimensional problem 
(see equations (1 1) and (14) of I). More recently, Chaba and Pathria (1976) and Zasada 
and Pathria (1976) have employed (49) and (63) in a similar analysis of the three- 
dimensional problem. In each case the use of these formulae has enabled us to discuss 
successfully the growth of a condensate component in the given system and to view the 
phenomenon of Bose-Einstein condensation in terms of a ‘collapse of the lattice points 
of the thermogeometric space of the given system towards its origin (Greenspoon and 
Pathria 1974)’. 

It will be noticed that the sum in (63) is equivalent to the screened Coulomb 
potential, at the origin, owing to an infinitely extended lattice distribution of point 
charges. In the limit a + 0, this sum assumes the asymptotic value (47r/a2) + CJT. 
Noting that 

we find that C3 is a measure of the electric potential at a given lattice point when a unit 
positive charge is placed at each of the other lattice points while a balancing negative 
charge is distributed uniformly throughout the space (Harris and Monkhorst 1970). 
Such an interpretation comes naturally from the expression (63); it remains obscure in 
evaluations such as of Hautot (1974). Generalizations (61) and (62 )  also admit of 
similar interpretations. 

As mentioned in the introduction, our work has a direct bearing on the determina- 
tion of Madelung constants and other related sums that appear in the theory of cubic 
lattices. For instance, 
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(ii) 

1 
a(CsC1) =‘*([(/I +;)’ + ( i 2 + ; ) 2  + ( l 3 + 5 )  1 2 ] 1/2- (1; + 
where the summation C* implies that the term with l1 = l 2  = l3 = 0 is excluded from the 
latter part of the sum. We find that 

(67) 1 1 1  1 1 1  
a(CsC1) = lim [ V(-j,z, I ;  a )  - V’ (0, 0,O; a ) ]  = K’[A ( T , z ,  5 )  - C,]. 

a-0 

(iii) 

1 3 3  1 1 1  = lim [3 ~ ( 4 ,  4,Z; a )  + ~ ( 4 ,  4,z; a )  - 3 V(O, ;, i; a )  - v’(o,o, 0; a ) ]  

=.rr-’[3A(s,4,a)+A(4,4,4)-3A(O,t, ;)-CJ. 
a+O 

(68) 1 3 3  1 1 1  

Now, it is straightforward to show that 

(69) A(’1 L)-A(l 1 3 ) = 1  1 1 1 
4 , 4 ?  4 - 4 , 4 9 4  4 A ( %  3, 2) .  

In view of the relations (596) and (69), equation (68) takes the form 

(70) 

(71) 
as has been reported by several authors; see Zucker (1976). 

In conclusion we wish to remark that most of the results reported in this paper are in 
the form of identities, valid for all a > 0, and relate a given sum to another one in the 
same dimensionality. The usefulness of these results lies in the fact that, for small values 
of a, the given sum, in general, is slowly convergent whereas the sum to which it is 
related converges rapidly. The formula in question then provides a useful asymptotic 
expansion of the given sum for small values of a. On the other hand, the same identity, 
for large values of a, provides an asymptotic expansion of the sum appearing on the 
right-hand side, for now it is the sum on the left-hand side of the identity that converges 
rapidly. This dual aspect of the Poisson summation formula makes it invaluable for 
handling a variety of summations that appear in the theoretical study of different 
physical problems. 

- 1  1 1 1  1 1 1  
CY (ZnS) = T [ A  (z, z, d - B(z, 2, d - GI. 

It follows that 

(Y (ZnS) = CY (NaCl) + a (CsCI), 
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